
Container-Based Distributed
System.
Team: GKE

Rajan Patel

Docker

● Containers
○ OS level virtualization
○ Lightweight as no whole OS image
○ Less memory, network bandwidth requirement, also has version control
○ Process level isolation

 1/23

Docker

● Docker (allows you to easily deploy and run applications in container)
○ Provides version control, just push the changes
○ Continuous deployment and testing
○ Portability
○ Isolation (resources and configuration)
○ Security (own set of resources, read only mount points)

 2/23

Running multiple containers

● Example of running 3 services - Frontend, Backend and Database service
● Company wants to

○ Run these services for high availability,
○ Easy deployment and
○ Scale these services to a distributed environment for multiple regions

● Require tool for management, should provide
○ Provide easy deployment,
○ A communication mechanism between services,
○ Scale-ability,
○ Fault tolerance for the system...

 3/23

4 key advantages of orchestration platform

● Deployment
● Scaling
● Network
● Insight

 4/23

Container orchestration

● Features to look for
○ Installation and Cluster configuration,
○ Scalability,
○ GUI,
○ Auto- Scaling,
○ Updates and rollbacks,
○ Data Volumes,
○ Load-balancing,
○ Logging and Monitoring,
○ Downtime...

 5/23

Tool we chose for research

● As per the research papers docker swarm is good for handling 1000+
containers while kubernetes is made to handle more complex architecture with
capability of handling 5000+ containers.

● Kubernetes provides a GUI and good cli for dashboard
● While both are great tools for managing containers we chose to move forward

with GKE as it provides better features for distributed machine learning.

 6/23

Kubernetes

● Kubernetes is a large and complex system for deploying, automating, scaling
and operating containers

● Comes with a master node which runs cluster services and several worker
nodes which runs your pods (set of containers)

● We feed these cluster services with specific configuration and cluster services
deal with running that particular configuration in the infrastructure.

 7/23

Kubernetes (Architecture components)

● Pods
● Master node
● Replication Controllers
● Schedulers
● Label (artifact)
● YAML (deployment)

○ Server info
○ Port on which pods running
○ Initial state
○ Number of pods

● Worker Nodes
○ Kubelet

 8/23

Experiment - Distributed Machine Learning.

 9/23

Experiment - Distributed Machine Learning.

10/23

5 0 4 1

● MNIST dataset.

○ 60,000 - Training set images

○ 10,000 - Test set images.

○ 28x28 - Resolution.

● DNNClassifier

● TensorFlow Estimator: to perform

distributed training.

Packaging up model in a Docker containers

11/23

Code: Model
Execution: path to run code, Read parameter
on network port.
Dependency (23):
Absl-py v0.2.2, astor v0.6.2,, html5lib v0.999,
Markdown v2.6.11, mock v2.0.0, numpy v1.14.5,
olefile v0.45.1, pbr v4.0.4, Pillow v4.0.0,
protobuf v3.6.0, scipy v0.18.1, six v1.11.0,
tensorboard v1.8.0, tensorflow v1.8.0,
tensorflow-serving-api v1.5.0, termcolor v1.1.0,
virtualenv v16.0.0, Werkzeug v0.14.1 ...
Network Connection: NFS and PS

Docker Container

Docker Image

learnk8s/mnist:1.0.0

1. Create cluster.
gcloud container clusters create distributed-tf --machine-type=n1-standard-8 --num-nodes=3

3 x Machine:
Standard machine type with 8 vCPUs and 30 GB of memory.

2. Create NFS
gcloud compute disks create --size=10GB gce-nfs-disk

Share Network File System:
Size: 10 GB

3. Configure Kubernetes on Cluster
ks generate core kubeflow-core --name=kubeflow-core

Automate:
Container deployment, scaling, and management

Creating and configuring a Google Kubernetes Engine (GKE) Cluster

12/23

Schedule job on GKE cluster

13/23

Node

NFS

PodapiVersion: kubeflow.org/v1alpha1
kind: TFJob
Master: 1
 volumes:
 - name: nfs-volume
 ...
Worker: 5
 volumes:
 - name: nfs-volume
 image : learnk8s/mnist:1.0.0
 ..
PS: 1
 image: learnk8s/mnist:1.0.0
 imagePullPolicy: IfNotPresent
 ..

TFJob.yaml

GKE Cluster

Demo

14/23

Nodes: 3
Master: 1
Worker: 5
PS: 1

Schedule single job to cluster.

schedule_job(TFJob(hidden_layer = 3, learning_rate = 0.01))

First result.

15/23

Nodes: 3

Master: 1
Worker: 1
PS: 1

Nodes: 3

Master: 1
Worker: 5
PS: 1

What’s wrong?

Problem cause

16/23

Single Worker

Master/Worker spawning time: Job:2 5

M:

W1:

2

2 5

Total Time: 7 sec

Multi Worker

M:

W1:
W2:
W3:
W4:
W5:

2

2 1

Total Time: 11 sec

2
2

2
2

1
1

1
1

<

Problem solve

17/23

Single Worker

Master/Worker spawning time: Job:2 20

M:

W1:

2

2 20

Total Time: 22 sec

Multi Worker

M:

W1:
W2:
W3:
W4:
W5:

2

2 4

Total Time: 14 sec

2
2

2
2

4
4

4
4

>

Demo

18/23

for(hidden_layer : [1,2,3]) {
 for(learning_rate : [0.1, 0.01, 0.001]) {

schedule_job(TFJob(hidden_layer, learning_rate))
 }
}

Nodes: 3
Master: 1
Worker: 5
PS: 1

Schedule multiple jobs to cluster.

Final results
Nodes: 3, Master: 1, Worker: 2 Nodes: 3, Master: 1, Worker: 5

19/23

Final result

20/23

Nodes Masters PS Worker Max Time Avg. Time

1 1 1 2 3m 15s 2m 45s

1 1 1 5 2m 05s 1m 45s

2 1 1 2 2m 15s 1m 54s

2 1 1 5 1m 54s 1m 7m

3 1 1 2 1m 56s 1m 32s

3 1 1 5 1m 45s

Advantages of Kubernetes

● Velocity
○ Update the application without a downtime as users expect a constant uptime

● Immutability
○ Artifact created, will not be changed upon user modifications.

● Declarative Configuration
○ Configuration enables the user to describe exactly what state the system should be

● Self healing
○ Continuously take actions to ensure that current state matches the desired state.

● Decoupled components
○ Components separated by api, services, load-balancer etc.

21/23

Conclusion

● Applications can be colocated → Fewer machines, resources, cost
● Abstraction of Infrastructure → Portability
● Building decoupled microservice architectures

○ Pods, or groups of containers can group together container images developed by different
teams into a single deployable unit.

○ Services that provide load balancing, naming and discovery to isolate one microservice from
another.

○ Namespaces provide isolation and access control so that each microservice can control the
degree to which other services interact with it.

● Parallel model training and vertical scaling → Improved performance

22/23

Reference

● [1] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,“Borg, omega, and
kubernetes,” in ACM, 2016.

● [2] J. Cito, V. Ferme, and H. C. Gall, “Using docker containers to improve reproducibility
in software and web engineering research,”in IEEE, 2016.

● [3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, V. J. Amr Ahmed,J. Long†, E. J. Shekita,
and B.-Y. Su, “Scaling distributed machine learning with the parameter serve,” in CMU,
2017.

● [4] B. B. Rad, H. J. Bhatti, and M. Ahmadi, “An introduction to docker and analysis of its
performance,” in IEEE, 2017.

● [5] J. Shah and D. Dubaria, “Building modern clouds: Using docker,kubernetes google
cloud platform,” in IEEE, 2019.

● GitHub: Distributed Tensorflow on Kubernetes by Eric Ho
https://github.com/learnk8s/distributed-tensorflow-on-k8s

23/23

Thank you

